Covering planar graphs with forests

نویسندگان

  • József Balogh
  • Martin Kochol
  • András Pluhár
  • Xingxing Yu
چکیده

We study the problem of covering graphs with trees and a graph of bounded maximum degree. By a classical theorem of Nash-Williams, every planar graph can be covered by three trees. We show that every planar graph can be covered by two trees and a forest, and the maximum degree of the forest is at most 8. Stronger results are obtained for some special classes of planar graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three ways to cover a graph

We consider the problem of covering a host graph G with several graphs from a fixed template class T . The classical covering number of G with respect to T is the minimum number of template graphs needed to cover the edges of G. We introduce two new parameters: the local and the folded covering number. Each parameter measures how far G is from the template class in a different way. Whereas the ...

متن کامل

Covering planar graphs with degree bounded forests

We prove that every planar graphs has an edge partition into three forests, one having maximum degree 4. This answers a conjecture of Balogh et al. (J. Combin. Theory B. 94 (2005) 147-158).We also prove that every planar graphs with girth g ≥ 6 (resp. g ≥ 7) has an edge partition into two forests, one having maximum degree 4 (resp. 2).

متن کامل

Decomposing 4-connected planar triangulations into two trees and one path

Refining a classical proof of Whitney, we show that any 4-connected planar triangulation can be decomposed into a Hamiltonian path and two trees. Therefore, every 4-connected planar graph decomposes into three forests, one having maximum degree at most 2. We use this result to show that any Hamiltonian planar triangulation can be decomposed into two trees and one spanning tree of maximum degree...

متن کامل

Planar Graphs with Many Perfect Matchings and Forests

We determine the number of perfect matchings and forests in a family Tr,3 of triangulated prism graphs. These results show that the extremal number of perfect matchings in a planar graph with n vertices is bounded below by Ω ( 6 √ 7 + √ 37 n) = Ω (1.535) and the extremal number of forests contained in a planar graph with n vertices is bounded below by

متن کامل

Large induced forests in planar graphs with girth 4 or 5

We give here some new lower bounds on the order of a largest induced forest in planar graphs with girth 4 and 5. In particular we prove that a triangle-free planar graph of order n admits an induced forest of order at least 6n+7 11 , improving the lower bound of Salavatipour [M. R. Salavatipour, Large induced forests in trianglefree planar graphs, Graphs and Combinatorics, 22:113–126, 2006]. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2005